Keyboard shortcuts

Press or to navigate between chapters

Press S or / to search in the book

Press ? to show this help

Press Esc to hide this help

Metrics & KPIs for Product Management

Why Metrics Matter

Metrics are how we know if we’re succeeding. Without measurement, product decisions are opinions. With measurement, they’re informed choices.

“What gets measured gets managed.” — Peter Drucker


Types of Product Metrics

Input Metrics vs. Output Metrics

TypeDefinitionExample
Input (Leading)Activities we controlFeatures shipped, experiments run
Output (Lagging)Results we wantRevenue, retention, satisfaction

Focus on outcomes (output) but track inputs to understand causation.

The Metrics Hierarchy

                    ┌─────────────────┐
                    │  North Star     │  ← Company-level
                    │    Metric       │
                    └────────┬────────┘
                             │
              ┌──────────────┼──────────────┐
              ▼              ▼              ▼
        ┌──────────┐  ┌──────────┐  ┌──────────┐
        │ Product  │  │ Product  │  │ Product  │  ← Product-level
        │ KPIs     │  │ KPIs     │  │ KPIs     │
        └────┬─────┘  └────┬─────┘  └────┬─────┘
             │             │             │
        ┌────┴────┐   ┌────┴────┐   ┌────┴────┐
        │ Feature │   │ Feature │   │ Feature │  ← Feature-level
        │ Metrics │   │ Metrics │   │ Metrics │
        └─────────┘   └─────────┘   └─────────┘

The AARRR Framework (Pirate Metrics)

A classic framework for measuring the customer journey:

Acquisition

Question: How do users find us?

MetricDefinition
Traffic sourcesWhere visitors come from
Cost per acquisition (CPA)Marketing spend / new users
Conversion to signupVisitors → Signups

Activation

Question: Do users have a good first experience?

MetricDefinition
Time to valueHow long until first success
Onboarding completion% completing key steps
Activation rate% reaching “aha moment”

Retention

Question: Do users come back?

MetricDefinition
Retention rate% still active after N days/months
Churn rate% leaving per period
DAU/MAU ratioDaily/monthly active user engagement

Revenue

Question: Are we making money?

MetricDefinition
MRR/ARRMonthly/Annual recurring revenue
ARPUAverage revenue per user
LTVLifetime value of a customer
Expansion revenueRevenue from existing customers

Referral

Question: Do users tell others?

MetricDefinition
NPSNet Promoter Score
Referral rate% of users who refer others
Viral coefficientReferrals per user

B2B SaaS Metrics

Revenue Metrics

MetricFormulaWhy It Matters
ARRSum of annual contract valuesOverall business health
MRRSum of monthly contract valuesMonthly health
Net Revenue Retention (NRR)(Start MRR + Expansion - Churn - Contraction) / Start MRRGrowth from existing customers
Gross Revenue Retention (GRR)(Start MRR - Churn - Contraction) / Start MRRCustomer retention health

Customer Metrics

MetricFormulaTarget
Customer Acquisition Cost (CAC)Sales & Marketing spend / New customersLower is better
LTV:CAC RatioCustomer LTV / CAC>3:1 is healthy
Payback PeriodCAC / Monthly revenue<12 months ideal
Logo RetentionCustomers retained / Total customers>90% for B2B

Engagement Metrics

MetricDefinition
DAU/WAU/MAUActive users by period
Feature adoption% of users using specific features
Session frequencyHow often users return
Time in productEngagement depth

Product-Specific Metrics

For Data Products (Path2Response Context)

MetricDefinitionWhy It Matters
Match rateRecords matched / Records submittedData quality indicator
Data freshnessAge of most recent updateCompetitive differentiator
Audience performanceResponse rates, ROICustomer success
Query volumeAPI calls, exportsUsage and engagement
Coverage% of addressable market in databaseScale indicator

For Platform Products

MetricDefinition
API uptimeAvailability percentage
API latencyResponse time (p50, p95, p99)
Error rateFailed requests / Total requests
Developer adoption# of integrations, active developers

Setting Good Metrics

SMART Criteria

LetterMeaningExample
SSpecific“Increase retention” → “Increase 90-day retention”
MMeasurableCan track with data
AAchievableRealistic given resources
RRelevantConnected to business goals
TTime-bound“by end of Q2”

Good Metrics vs. Vanity Metrics

Good MetricVanity Metric
Activation rateTotal signups
Monthly active usersRegistered users
Retention rateTotal accounts
Revenue per customerPress mentions

Test: Does this metric drive decisions? Can we act on it?


Metric Anti-Patterns

Anti-PatternProblemSolution
Too many metricsAnalysis paralysisFocus on 3-5 key metrics
Vanity metricsFeels good, no insightTie to business outcomes
GamingOptimizing metric, not goalUse balanced scorecard
Short-term focusSacrifice long-term healthInclude leading indicators
No baselineCan’t measure improvementEstablish baselines first

Path2Response Metrics Framework

North Star Metric

Revenue from recurring customers (ARR × retention)

Product KPIs

AreaKey Metrics
AcquisitionNew customers, pipeline generated
ActivationFirst campaign delivered, time to first order
Retention97% client retention (company goal)
RevenueARR, expansion revenue, ARPU
Data QualityMatch rates, data freshness, coverage

Feature-Level Metrics Examples

FeatureSuccess Metrics
Digital AudiencesSegment adoption, campaign performance lift
Path2ContactAppend match rate, client satisfaction
Path2IgniteCampaigns run, response rate improvement
Path2LinkagePartner integrations, query volume

Operational Metrics

MetricTarget
Data update frequencyWeekly (transactions), Daily (digital)
API uptime99.9%
Support response time<4 hours
Onboarding time<2 weeks

Building a Metrics Dashboard

Dashboard Principles

  1. Hierarchy: Start with top-level, drill down
  2. Context: Include trends, comparisons, targets
  3. Actionability: Show metrics someone can act on
  4. Freshness: Update frequency matches decision cadence

Dashboard Layout

┌─────────────────────────────────────────────────────┐
│  NORTH STAR: [Metric] [Trend] [vs Target]           │
├─────────────────────┬───────────────────────────────┤
│  Revenue            │  Retention                    │
│  • ARR: $X          │  • Logo retention: X%         │
│  • Growth: +X%      │  • NRR: X%                    │
│  • Pipeline: $X     │  • Churn: X customers         │
├─────────────────────┼───────────────────────────────┤
│  Acquisition        │  Engagement                   │
│  • New customers: X │  • Active customers: X        │
│  • Win rate: X%     │  • Feature adoption: X%       │
│  • CAC: $X          │  • Campaigns run: X           │
├─────────────────────┴───────────────────────────────┤
│  Data Quality                                       │
│  • Match rate: X%  • Freshness: X days  • Coverage  │
└─────────────────────────────────────────────────────┘